EPR of Mn²⁺ and Eu²⁺ in PbTe Thin Films Grown by Laser-assisted Deposition Technique

Plyatsko S.V.¹, Senior researcher; Gromovoj Yu.S.¹, Senior researcher; Rashkovetskyi L.V.¹, Researcher; Kadyshev S.K.², Senior researcher
¹ Institute of Semiconductor Physics, 45, Nauki Pr., 03028 Kiev, Ukraine
² J. Balasagyn Kyrgyz National University named after J. Balasagyn, 547, Frunze Str., 720033 Bishkek, Kyrgyz Republic

Electron paramagnetic resonance (EPR) of Mn²⁺ and Eu²⁺ in thin films PbTe and also crystal structures of films grown by laser-assisted deposition technique (LAD) on different substrates at relatively low temperatures (*T* = 293-573 K) are analyzed. The investigations of EPR indicated to verify the crystalline quality of IV-VI layers. In the layers deposited from the Pb(Ge)Te : Mn and PbTe : Eu targets, measurements of the EPR spectra with the orientation of the magnetic field perpendicular to the layer surface exhibited satellite lines near each HFS line ($\Delta H \cong 4.5$ Oe), caused by superhyperfine interaction (SHFI) of Mn²⁺ 3d⁵ and Eu²⁺ 4f⁷ electrons with the nuclear moments of ¹²⁵Te and ¹⁵³Te in the first coordination shell. In this case the SH parameters are the next:

PbTe : Mn - g = 1.9975 ± 0.0005, A = (59.9 ± 0.2) $\cdot 10^{-4}$ cm⁻¹, and $a_{\text{Te}} = (15.8 \pm 0.2) \cdot 10^{-4}$ cm⁻¹, PbTe : Eu - g = 1.997510 ± 00055, $b_4 = (40.1 \pm 0.45) \cdot 10^{-4}$ cm⁻¹, $b_6 = (-0.63 \pm 0.45) \cdot 10^{-4}$ cm⁻¹, A = (27.0 ± 0.45) \cdot 10^{-4} cm⁻¹, $a_{\text{Te}} = (11.8 \pm 0.45) \cdot 10^{-4}$ cm⁻¹ for the ¹⁵¹Eu isotope, A = (11.9 ± 0.45) \cdot 10^{-4} cm⁻¹ for the ¹⁵³Eu isotope.

where a_{Te} is SHFI constant.

Due to the heavy overlap of the EPR lines, the value of the SHFI constant for the ¹⁵³Eu isotope can't be determined. The ratio of the HFI constants, $A(^{151}Eu)/A(^{153}Eu)$ obtained from the experimental data is equal to the ratio of the nuclear magnetic moments for these isotopes.